hastelloyG3
hastelloyG3特性及應用領域概述:
Hastelloy G3合金簡稱G3,是一種性能優越的鎳基耐蝕合金,屬于含Mo、Cu的Ni-Cr-Fe系,它具有優良的抗氧化和大氣腐蝕及抗應力腐蝕開裂能力,而且具有較高的抗局部腐蝕(點蝕、縫隙腐蝕)的能力。合金中由于含有較高的Fe,相對于其它鎳基耐蝕合金具有成本低的特點。G3合金常用于煙氣脫硫系統、造紙、磷酸生產蒸汽發生器和熱交換器中。用該合金制成的油井管具有優異的抗H2S、CO2、Cl-腐蝕性能,是酸性氣田油井管的最佳選材。目前,世界范圍內只有日本住友、美國SMC、德國V&M以及瑞典Sandvik能夠生產。
hastelloyG3工藝性能與要求:
熱變形過程
在高溫奧氏體區變形的金屬,隨著變形量的增大,加工硬化過程和高溫動態軟化過程(動態回復和動態再結晶)同時進行。
Ⅰ 加工硬化階段(0<ε<εc)
當塑性變形小時,位錯密度不斷增加,變形抗力也不斷增加直到最大值。另一方面,由于材料在高溫下變
變形過程受力情況
形,變形中產生的位錯能夠在熱加工過程中通過交滑移和攀移等方式運動,使部分位錯消失,部分重新排列,造成奧氏體的回復。由于位錯的增值速度相對來說與變形量無關,而位錯的消失速度則與位錯密度值有關。因此當變形量逐漸增大時,位錯密度也增大,位錯消失速度也增大,反映在真應力—真應變曲線上隨著變形量增大加工硬化速度減慢,但是總的趨向在第一階段還是超過動態軟化,因此隨著變形量增加變形應力不斷增加。
Ⅱ 開始再結晶階段(εc<ε<εs)
在第一階段動態軟化抵消不了加工硬化,隨著變形量的增加金屬內部畸變能不斷升高,達到一定程度后在奧氏體中將發生動態再結晶。通過大角度晶界的移動,位錯大量消失,位錯原來集聚的地方形成新的晶粒。隨著變形的繼續進行,在熱加工過程中不斷形成再結晶核心并繼續成長直到完成一輪再結晶,變形應力降到最低值。發生動態再結晶需要一個最低的變形量,稱為動態再結晶的臨界變形量,以εc表示,εc幾乎與真應力—真應變曲線上峰值應力所對應的應變量εp相等,一般εc≈0.8-0.9εp。
Ⅲ 穩定變形階段(ε>εs)
動態再結晶發生后,隨著變形的繼續,一方面再結晶繼續發展,使金屬軟化;另一方面已發生動態再結晶的晶粒又承受新的變形,產生加工硬化。這兩個過程同時進行,達到平衡時,流變應力近似不變,使真應力—真應變曲線近似水平。這種情況稱為連續動態再結晶如。如果變形溫度較高,變形速率較小,則第三階段的真應力—真應變曲線可能出現波浪式變化,稱為間斷動態再結晶。
熱變形機制
(1)動態回復
動態回復常常發生在一些層錯能較高的金屬的熱塑性變形過程中,如鋁及鋁合金,工業純鐵、鐵素體鋼以及鋅、鎂、錫等金屬。這類金屬在熱塑性變形時,其位錯的交滑移和攀移比較容易進行,因此一般認為動態回復是這類材料熱加工過程中的軟化機制,即使在遠遠高于靜態再結晶溫度下進行熱加工,通常也只有動態回復而不發生動態再結晶。動態回復過程中發生的組織演化主要是點缺陷、位錯的消除和重排以及亞晶的形成。動態回復的發生降低了變形畸變能,減小了動態再結晶發生的驅動力,動態再結晶過程受到一定抑制或根本不發生。
當熱變形以動態回復機制進行時,其組織主要呈現以下特征:原始晶粒沿變形方向被拉長,亞晶呈等軸性并且亞晶內位錯密度很低;其真應力-真應變曲線是一個逐漸增大直至達到一穩態流變階段的曲線,沒有峰值應力。動態回復機制發生的溫度一般在0.4-0.6Tm。動態回復后的金屬位錯密度高于相應的冷變形后靜態回復的密度。
應用范圍
G系列合金(G3、G30、G35)主要用于石化工業如油井管、濕法磷酸生產使用的蒸發器,核工業中核燃料再生設備、以及鋼廠酸洗設備等。C系列合金(C276、C22、C4)是使用量最大的一類耐蝕合金之一,在氧化或還原環境下都有很好的耐腐蝕性。因此廣泛應用于各種腐蝕環境復雜的地方,如核工業、制藥工業等。690合金是一種非常重要的核材料,是核電站核能發電蒸汽管的不可替代材料,屬于核心部件,對應力腐蝕開裂具有很好的抵抗作用。
上一篇:Hastelloy C-59
下一篇:hastelloyC
01
鎳基合金系列
TEL:021-67869811
02
特殊銅合金系列
TEL:021-67869811
03
特種不銹鋼系列
TEL:021-67869811